A Study on Weighting Training Patterns for Fuzzy Rule-Based Classification Systems

نویسندگان

  • Tomoharu Nakashima
  • Hisao Ishibuchi
  • Andrzej Bargiela
چکیده

In this paper, we examine the effect of weighting training patterns on the performance of fuzzy rule-based classification systems. A weight is assigned to each given pattern based on the class distribution of its neighboring given patterns. The values of weights are determined proportionally by the number of neighboring patterns from the same class. Large values are assigned to given patterns with many patterns from the same class. Patterns with small weights are not considered in the generation of fuzzy rule-based classification systems. That is, fuzzy if-then rules are generated from only patterns with large weights. These procedures can be viewed as preprocessing in pattern classification. The effect of weighting is examined for an artificial data set and several realworld data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems

Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and  interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

ارائه‌روش جدید مبتنی‌بر برنامه‌نویسی ژنتیک برای وزن‌دهی قوانین فازی در طبقه‌بندی نامتوازن

In classification problems, we often encounter datasets with different percentage of patterns (i.e. classes with a high pattern percentage and classes with a low pattern percentage). These problems are called “classification Problems with imbalanced data-sets”. Fuzzy rule based classification systems are the most popular fuzzy modeling systems used in pattern classification problems. Rule weights...

متن کامل

USING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS

This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punish...

متن کامل

Entropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection

Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004